

Content

1.	IPAS DaliControl e64Pro V2.0.0	. 1
2.	IPAS / KNX secure	. 2
3.	General Soft-Start Behaviour	. 2
4.	Energy Reporting according to DALI Part 252	. 2
5.	Cyclic status request of individual EVG's	. 3
6.	e64Pro speaks MQTT in the IoT Network	. 3
7.	ECG installation into predefined groups	. 5
8.	Take over of already externally configured devices	. 5
9.	Calling up scenes und effects time-controlled	. 5
10.	Overview of DALI Input Devices	6
11.	Read out GTIN from Input Devices	6
12.	Concept of "Virtual Input Devices"	. 7
13.	Motion detectors and brightness sensors	8
14.	Generic DALI Inputs	9
15.	DALI Push Buttons	9
16.	Generic KNX Inputs fort he IoT network	LO

1. IPAS DaliControl e64Pro V2.0.0

In this newsletter we inform about new functions and features of the IPAS DaliControl e64Pro Gateway. The Multi Master Controller e64Pro gets a complete software update with version 2.0.0. Not only the firmware of the units has been revised, but also the ETS application and the DCA.

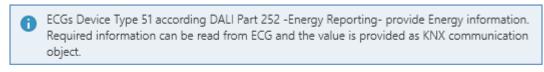
- Firmware V2.0.0
- > ETS Application V2.0
- > DCA V2.0.0.0
- Application Description V2.0.x

Firmware, ETS application, DCA and the current application description are now available for download on our website:

https://www.ipas-products.com/catalogue?ref=4101-145-02

2. IPAS 🍄 PROtect / KNX secure

- ➤ All IPAS units with a "Pro" in the name belong to our ♀ PROtect Serie
- > PROtect units can be commissioned in the ETS secure

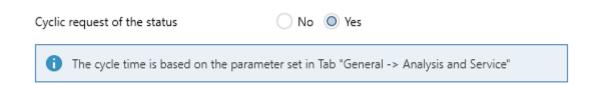

3. General Soft-Start Behaviour

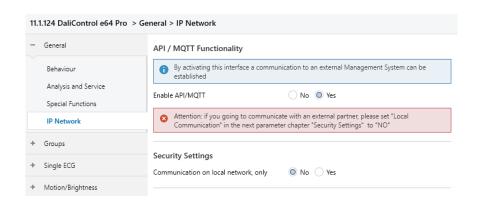
- ➤ Parameters/General/Behaviour
- Set General Soft-Start Behaviour
- Setting applies to all ECGs

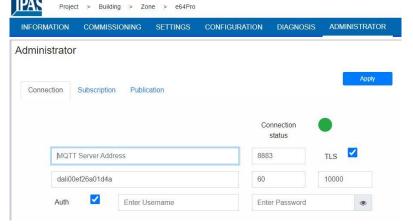
4. Energy Reporting according to DALI Part 252

- Read out current power from ECGs with DT-51
- Determining the power consumption in the lighting system.
- Enables savings opportunities through more efficient lighting
- Output of the active power in "W" or the current energy consumption in "Wh

Enable Energy Reporting


Active Power [W]




- 5. Cyclic status request of individual EVG's
 - Set cyclical status request of individual ECGs
 - To receive status feedback from passive DALI controllers
 - For luminaires from non-DALI systems

6. e64Pro speaks MQTT in the IoT Network

Activate MQTT function in the parameters of the ETS applications

Configuration of the MQTT connection in the web interface

- Connection
- Subscribtion
- Publication

The following information and functions are provided to the IoT network:

```
▼ e64Pro
    status = online
   info = {"Manufacturer":"IPAS GmbH","Type":"0x0308","Name":"DALI Gateway e64Pro","Version":"2.0.1","Serial":"00ef:26a0428b","projectId":"","buildingId":"","zoneId":"","zoneId":""
       groups = [{"Number":1,"Name":"RGB","ColorType":7,"CntEcgs":4,"CntConverter":0},{"Number":2,"Name":"RGB TC","ColorType":11,"CntEcgs":1,"CntConverter":0},{"Number":2,"Name":"RGB TC","ColorType":11,"CntEcgs":1,"CntConverter":0},{"Number":2,"Name":"RGB TC","ColorType":4},{"Number":2,"ShortAddress":5,"Long.

egs = [{"Number":1,"ShortAddress":6,"LongAddress":11039602,"GroupNumber":1,"Name":"RGB T","DeviceType":8,"ColorType":4},{"Number":2,"ShortAddress":5,"Long.
    statistic = ("CntLamps":9,"CntEcgs":9,"CntConverter":0,"LampFailures":0,"EcgFailures":0,"ConverterFailures":0,"LampFailRate":0,"EcgFailRate":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures":0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,"ConverterFailures:0,
             brightness = {"Error":0,"Value":280}
             presence = {"Error":0,"Value":0}
temperature = {"Error":0,"Value":25.7}
            brightness = {"Error":0,"Value":112}
presence = {"Error":0,"Value":0}
              humidity = {"Error":0,"Value":43}
     ▼ group
▼ 1
              \textbf{statistic} = \{\text{"CntLamps":4,"CntEcgs":4,"CntConverter":0,"LampFailures":0,"EcgFailures":0,"ConverterFailures":0,"FailRate":0,"OperatingHours":0\} \}
             status = {"Mode":0,"Value":0}
             colour = {"Colour":{"rgb":{"r":255,"g":0,"b":0}}}
             statistic = {"CntLamps":1,"CntEcgs":1,"CntConverter":0,"LampFailures":0,"EcgFailures":0,"ConverterFailures":0,"FailRate":0,"OperatingHours":0}
              status = {"Mode":0,"Value":100}
             colour = {"Colour":{"tc":3500,"rgb":{"r":181,"g":171,"b":255}}}
      ▼ ecq
             status = {"Mode":0,"Value":100}
              colour = {"Colour":{"rgbw":{"r":255,"g":0,"b":0,"w":255}}}
             status = {"Mode":0,"Value":100}
               colour = {"Colour":{"tc":3500}}
             status = {"Mode":0,"Value":100}
             status = {"Mode":0."Value":100}
     ▼ knx
             status = {"Value":127.0,"Unit":"KW"}
             status = {"Value":108.0,"Unit":"KW"}
             status = {"Value":223.0,"Unit":"KW"}
```

- General device information such as status, info and statistics
- Group information contains name, colour type and number of ECGs and converters
- ➤ Information on ECGs such as number, address, group affiliation, name as well as device and colour types
- Groups status, colour, error and operating hours
- ECG status, colour, error and operating hours
- Test results and test status of emergency luminaires
- > Sensor measured values such as brightness, presence and generic values
- ➤ Measured values and units of the generic KNX objects
- Control of the groups and all ECGs

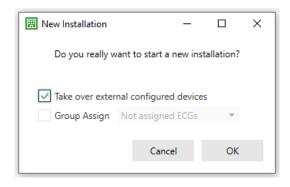
OK

Do you really want to start a new installation?

Cancel

Take over external configured devices

✓ Group Assign Group03

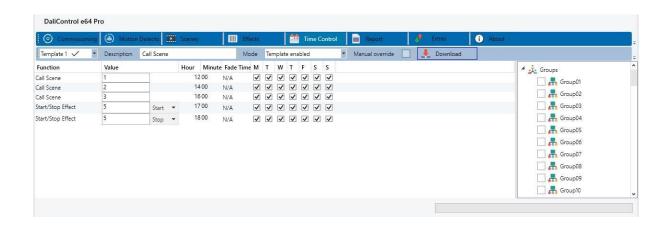

News 06/2023 - e64Pro V 2.0.0

7. ECG installation into predefined groups

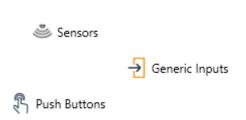
- Can be used for New- and Postinstallation
- Function available in DCA and in the web interface
- Makes identification of each individual ECG unnecessary
- Assignment of the ECGs to the groups is not necessary
- Saves a lot of time during commissioning or post-installation
- ➤ The prerequisite is that each DALI group is protected by its own load switch

8. Take over of already externally configured devices

- Takeover of already externally configured ECGs for a new installation
- Short and long addresses are read
- Preservation of the group assignment


9. Calling up scenes und effects time-controlled

- Use already configured scenes in time control
- No double configuration necessary
- Designing time control templates more clearly
- Start and stop effect sequences time-controlled
- Configurable in the DCA and in the web interface
- Time saving when configuring time control

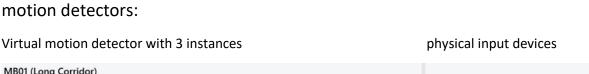


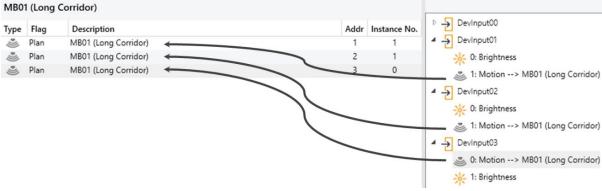
10. Overview of DALI Input Devices

- "Virtual Input Devices"
- Motion detectors
- Brightness sensors
- Generic DALI Inputs
- Push Buttons
- Generic KNX Inputs

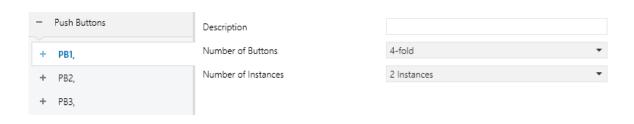
11. Read out GTIN from Input Devices

- Reading out the GTIN of DALI2 units in the DCA
- Copy function of the GTIN in the DCA
- Clear identification of installed unit types
- Query the GTIN in the official database of the DALI Allience / DiiA https://www.dali-alliance.org/products
- Quickly find technical data and documentation from the manufacturer
- Saves a lot of time during installation



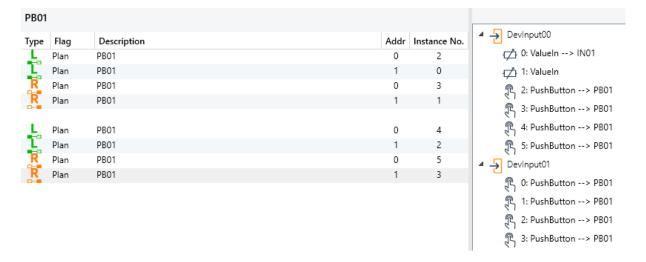


12. Concept of "Virtual Input Devices"


- Virtual input devices for motion detectors, brightness sensors and pushbuttons
- Multiple instances of different physical input devices can be linked to a virtual input device
- Linking is done in DCA simply by drag-and-drop
- Simple master/slave configuration of motion detectors
- Quick configuration of several brightness sensors to determine a min., max. or average value
- > The configuration of a virtual push-button can be applied to up to 4 physical push-buttons in parallel

Concept of "Virtual Input Devices" using the example of a long corridor with 3 motion detectors:

A virtual push button in the DCA can also be parameterised with up to 4 physical instances:



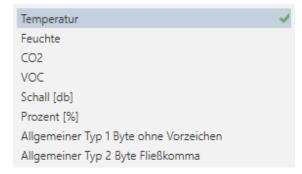
Example with 2 real Dali push-buttons with the same configuration or mode of operation:

Virtual 4-fold push-button with 2 instances

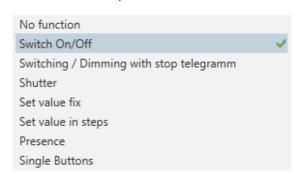
physical pushbuttons

13. Motion detectors and brightness sensors

- Extension of the parameters for movement and brightness
- 2 point limit value light control
- Automatic and manual operation
- ➤ Manual override of automatic operation adjustable
- > Fallback to automatic mode after override parameterisable
- ➤ Max. 7 parallel instances for motion and/or brightness sensors for easy master/slave configuration
- Min., max. or averaging of the brightness value when using several instances
- > KNX object for external setting of the off-delay time for motion detection
- > Brightness limit value for light control adjustable via external KNX object
- External KNX trigger input to enable extended master/slave operation with KNX devices



14. Generic DALI Inputs


- Max. 8 Generc Inputs
- Manufacturer-specific correction of the measured values by multiplicative and additive factors
- Definable min. and max. Limit alarms for all generic DALI sensors
- Support for different sensor types


15. DALI Push Buttons

- Max. 8 DALI push-buttons configurable in the gateway
- 2-4 button pairs configurable per push-button
- Support of LED status feedback
- ➤ Max. 4 instances for easy configuration of several push-buttons with the same functions
- Use as button pairs or as single buttons
- Button functions can be used internally for groups, ECGs, scenes and effects
- Functions of the DALI buttons can also be used via KNX objects

Functions Button pairs:

Functions Single Buttons:

16. Generic KNX Inputs fort he IoT network

- ➤ 16 additional generic KNX objects
- KNX measurement or status values send via MQTT to the IoT
- Variety of data types
- ➤ Many common measuring units
- 1 bit
 1 Byte (0..100%)
 1 Byte unsigned
 1 Byte signed
 2 Byte unsigned
 2 Byte signed
 2 Byte float
 4 Byte unsigned
 4 Byte signed
 4 Byte signed
 4 Byte float

Examples of available units:

2 Byte float:

°C (DPT9.001) Pa (DPT9.006) kW (DPT9.024) W/m2 (DPT9.022) m/s (DPT9.005) lux (DPT9.004) % Humidity (DPT9.007) s (DPT9.010) mA (DPT9.021) mV (DPT9.020) ppm (DPT9.008) air flow (m3/h - DPT9.009) °F (DPT9.027)

4 Byte float:

```
°C (DPT14.068)
Pa (DPT14.058)
W (DPT14.056)
J (DPT14.031)
Hz (DPT14.033)
m2 (DPT14.010)
```